
Polyspace® Code Prover™ Server™
Getting Started Guide

R2021a

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Polyspace® Code Prover™ Server™ Getting Started Guide
© COPYRIGHT 2019-2021 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.
Revision History
March 2019 Online Only New for Version 10.0 (Release 2019a)
September 2019 Online Only Revised for Version 10.1 (Release 2019b)
March 2020 Online Only Revised for Version 10.2 (Release 2020a)
September 2020 Online Only Revised for Version 10.3 (Release 2020b)
March 2021 Online Only Revised for Version 10.4 (Release 2021a)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Install Polyspace Code Prover Server
1

Polyspace Code Prover Server Product Description 1-2

Install and Configure Polyspace Code Prover Server
2

Install Polyspace Server and Access Products . 2-2
Workflow . 2-2
Product Installation . 2-3
Check Polyspace Installation . 2-5
Install Polyspace with Other MathWorks Products 2-6
Configure License Borrowing . 2-6
Update Polyspace Products . 2-7

Install Products for Submitting Polyspace Analysis from Desktops to
Remote Server . 2-10

Choose Between Local and Remote Analysis . 2-10
Requirements for Remote Analysis . 2-10
Configure and Start Server . 2-13
Configure Client . 2-16
Offload Polyspace Analysis from Desktop to Server 2-17
Submit Analysis Jobs from Multiple Releases of Polyspace 2-18

Run Polyspace Code Prover Server After Code Submission
3

Run Polyspace Code Prover on Server and Upload Results to Web
Interface . 3-2

Prerequisites . 3-2
Check Polyspace Installation . 3-3
Run Code Prover on Sample Files . 3-4
Sample Scripts for Code Prover Analysis on Servers 3-5
Specify Sources and Options in Separate Files from Launching Scripts . . . 3-6
Complete Workflow . 3-6

Send Email Notifications with Polyspace Code Prover Server Results . . . 3-8
Creating E-mail Notifications . 3-8
Prerequisites . 3-9
Export Results for E-mail Attachments . 3-10

iii

Contents

Assign Owners and Export Assigned Results . 3-10

Run Polyspace Code Prover Server Prior to Code Submission
4

Send Code Prover Analysis from Desktop to Locally Hosted Server 4-2
Client-Server Workflow for Running Bug Finder Analysis 4-2
Prerequisites . 4-3
Configure and Start Server . 4-3
Configure Client . 4-5
Send Analysis from Client to Server . 4-6

Deploy Polyspace Code Prover Server
5

Polyspace Products for Code Analysis and Verification 5-2
Using Polyspace Products in Software Development 5-2
Coordinating Pre-Submit and Post-Submit Usage of Polyspace 5-4
Polyspace Products for Ada Code . 5-4

Quick Start Guide for Polyspace Server and Access Products 5-5
Installation . 5-6
Setting Up Polyspace Analysis . 5-7

Choose Between Polyspace Bug Finder and Polyspace Code Prover 5-9
How Bug Finder and Code Prover Complement Each Other 5-9
Workflow Using Both Bug Finder and Code Prover 5-14

iv Contents

Install Polyspace Code Prover Server

1

Polyspace Code Prover Server Product Description
Prove the absence of run-time errors in software

Polyspace Code Prover Server is a sound static analysis engine that proves the absence of overflow,
divide-by-zero, out-of-bounds, array access, and certain other run-time errors in C and C++ code. It
performs interprocedural analysis of all possible control and data flows, including multi-threaded
code, to identify each operation as always safe, always faulty, unreachable, or vulnerable. Polyspace
Code Prover Server identifies code segments that are free of run-time errors, proven to fail,
unreachable, or unproven.

Polyspace Code Prover Server can run on a server-class machine and can be integrated into build and
continuous integration systems for automated verification using tools such as Jenkins. The analysis
results can be published to Polyspace Code Prover Access™ for triage and resolution.

Support for industry standards is available through IEC Certification Kit (for IEC 61508 and ISO
26262) and DO Qualification Kit (for DO-178).

1 Install Polyspace Code Prover Server

1-2

Install and Configure Polyspace Code
Prover Server

2

Install Polyspace Server and Access Products
Polyspace checks C/C++ code for bugs, run-time errors, coding standard violations, and other issues
by using static analysis. You can run a Polyspace analysis on server class machines and review the
analysis results on a web browser with these products:

• Polyspace Bug Finder Server for execution on servers and Polyspace Bug Finder Access for web
browser based review of results

• Polyspace Code Prover Server for execution on servers and Polyspace Code Prover Access for web
browser based review of results

By using these products with a build automation tool, you can incorporate a Polyspace analysis into
continuous integration systems.

Workflow
In a continuous integration process, developers submit code to a shared repository. An automated
build system builds and tests each code submission at regular intervals or based on predefined
triggers, and then integrates the code. You can run a Polyspace analysis as part of this process.

The workflow consists of three steps:

1 Triggering Polyspace analysis:

2 Install and Configure Polyspace Code Prover Server

2-2

When developers submit their code, a build automation tool such as Jenkins triggers the
Polyspace analysis.

2 Running Polyspace analysis:

The analysis is run by using the products, Polyspace Bug Finder Server or Polyspace Code Prover
Server. The results are uploaded to a server that hosts the Polyspace Access web interface. The
same computer can act as the server that runs the analysis and hosts the uploaded results.

3 Reviewing analysis results:

To see the uploaded results, each reviewer must have a Polyspace Bug Finder Access or
Polyspace Code Prover Access license to login to the Polyspace Access web interface.

These steps describe a workflow after code submission. Before code submission, individual
developers can:

• Run a Polyspace analysis and review the results on their desktops. See “Install Polyspace Desktop
Products” (Polyspace Code Prover).

• Offload a Polyspace analysis from their desktops to a remote server and review the downloaded
results on their desktops. See “Install Products for Submitting Polyspace Analysis from Desktops
to Remote Server” on page 2-10.

For an overview of all Polyspace products, see “Polyspace Products for Code Analysis and
Verification” on page 5-2.

Product Installation
For this workflow, you must install the following products on the computer or computers that act as
the server.

Polyspace Products to Run Analysis

Install Polyspace Bug Finder Server or Polyspace Code Prover Server to run the analysis and upload
results to a web interface for review.
Installation

1 Run the MathWorks® installer. Choose a license for Polyspace server products. You can get the
installer and license by purchasing the product or requesting a trial. For detailed instructions,
see “Installation and Licensing”.

Along with the Polyspace Server products, install the network license manager to manage
licenses (unless it is already installed). Configure the license manager to start automatically on
reboot. For instance, in Windows®, you can configure the license manager to start as a service.

2 At the end of the installation, start the network license manager. See “Start the Network License
Manager”.

To install the products non-interactively or silently at the command line, see Install Noninteractively.

You require Polyspace Bug Finder Server to install Polyspace Code Prover Server. For more efficient
analysis, the computer that runs the analysis should have at least four physical cores, with at least 4

 Install Polyspace Server and Access Products

2-3

https://www.mathworks.com/downloads/
https://www.mathworks.com/matlabcentral/answers/570739-how-to-install-polyspace-server-products-entirely-at-command-line

GB of memory per core. Beyond four cores, a Code Prover analysis cannot be further parallelized. A
Bug Finder analysis can use the maximum number of available cores.

Installation Folder

A default installation folder is used based on your operating system and the release version. During
installation, you can change this default folder if needed.

For instance, the default installation folder for release R2021a is listed here.

Operating System Default Installation Folder
Windows C:\Program Files\Polyspace Server

\R2021a
Linux® (most distributions) /usr/local/Polyspace_Server/R2021a
Mac /Applications/Polyspace_Server/R2021a

Polyspace Products to Review Results

Install the components to host the web interface of Polyspace Access.

Each reviewer must have a Polyspace Bug Finder Access and/or Polyspace Code Prover Access
license to view the results on the web interface.

• Each reviewer with a Polyspace Bug Finder Access license can review the dashboard with an
overview of analysis results and Bug Finder result details.

• Each reviewer with a Polyspace Bug Finder Access and Polyspace Code Prover Access license can
review the Code Prover result details (in addition to the dashboard and Bug Finder result details).

Note that a Polyspace Code Prover Access license requires a Polyspace Bug Finder Access license.

Installation

See “Manage Polyspace Code Prover Access Software” (Polyspace Code Prover Access). The
installation process is the same for Polyspace Bug Finder Access and Polyspace Code Prover Access.

Products to Schedule Polyspace Analysis

In a continuous integration workflow, a build automation tool schedules the Polyspace analysis as part
of a build process. The tool is not needed to run the Polyspace analysis or review the results but only
to integrate the analysis into an overall software build and test workflow.

For instance, Jenkins is a popular open source tool that can execute build scripts. For scripting
convenience, a Polyspace plugin, available in Jenkins, provides a build environment for automation of
Polyspace static analysis and simplifies post-analysis e-mail notification with Polyspace results.

Installation

Install a tool for continuous integration or build automation.

2 Install and Configure Polyspace Code Prover Server

2-4

For instance, to install Jenkins, see the Jenkins website. In the Jenkins interface, select Manage
Jenkins on the left. Select Manage Plugin. Search for the Polyspace plugin, and then download and
install the plugin.

Release Compatibility

When you upload Polyspace analysis results to Polyspace Access, you must use a version of Polyspace
Server that is the same as or older than the version of Polyspace Access. For instance, if you upload a
result to an R2021a version of Polyspace Access, you must use an R2021a or earlier version of
Polyspace Server.

More specifically, when you upload an analysis result to Polyspace Access:

• The analysis must have run using the same or an older version of Polyspace Server.
• The upload command must come from the same an older version of Polyspace Server.

The same considerations apply to:

• Exporting results and report generation from Polyspace Access.
• Uploading results to Polyspace Access from a Polyspace desktop product.

Check Polyspace Installation
To check if the installation of Polyspace Bug Finder Server was successful:

1 Open a command window. Navigate to polyspaceserverroot\polyspace\bin. Here,
polyspaceserverroot is the Polyspace Bug Finder Server installation folder, for instance,
C:\Program Files\Polyspace Server\R2021a.

2 Enter:

polyspace-bug-finder-server -help

You should see the list of options allowed for a Bug Finder analysis. To check if the installation of
Polyspace Code Prover Server was successful, you can perform the same steps for Polyspace Code
Prover Server. Replace polyspace-bug-finder-server with polyspace-code-prover-
server.

To check if the Polyspace Access web interface is set up for upload:

1 Navigate again to polyspaceserverroot\polyspace\bin.
2 Enter:

polyspace-access -host hostName -port portNumber -create-project testProject

Here, hostName is the name of the server hosting the Polyspace Bug Finder Access web server.
For a locally hosted server, use localhost. portNumber is the optional port number of the
server. If you omit the port number, 9443 is used.

If the connection is successful, a project called testProject should be created in the Polyspace
Access web interface.

 Install Polyspace Server and Access Products

2-5

https://jenkins.io/download/

3 Open this URL in a web browser:

https://hostName:portNumber/metrics/index.html

Here, hostName and portNumber are the host name and port number from the previous step.

In the Project Explorer pane on the Polyspace Access web interface, you should see the newly
created project testProject.

Install Polyspace with Other MathWorks Products
To install Polyspace with other MathWorks products such as MATLAB®, run the MathWorks installer
twice.

• In the first run, choose the license that corresponds to the other MathWorks products, such as
MATLAB, Simulink®, or Embedded Coder®.

• In the second run, choose the license that corresponds to the Polyspace products.

In this workflow, products such as MATLAB and Simulink are installed in a different root folder than
the Polyspace products. You can link the two installations and use MATLAB scripts to run Polyspace.
See “Integrate Polyspace Server Products with MATLAB”.

If you install the Polyspace desktop and server products, you also have to run the installer twice with
separate licenses. The desktop and server products are installed in separate root folders. For
instance, in Windows, the default root folders for an R2021a installation are:

• Polyspace desktop products: C:\Program Files\Polyspace\R2021a.

This folder contains executables to run analysis with Polyspace Bug Finder and Polyspace Code
Prover.

• Polyspace server products: C:\Program Files\Polyspace Server\R2021a.

This folder contains executables to run analysis with Polyspace Bug Finder Server and Polyspace
Code Prover Server.

Configure License Borrowing
If your Polyspace product uses a license that requires a license manager, for example a Commercial
Concurrent license, you can enable license borrowing and borrow a license.

Borrow a license for up to 720 hours (30 days) to continue using your Polyspace product even after
you disconnect your machine from the license manager server.

Licenses that support borrowing include the keyword BORROW on the INCREMENT lines for products,
for example:

INCREMENT Polyspace_BF MLM 40 01-jan-000 5 BORROW=720 \
 AE3FC254020DE6A3C24A

You must be an administrator to enable license borrowing. See “Enable License Borrowing”.

2 Install and Configure Polyspace Code Prover Server

2-6

Borrow a Polyspace License

Note This workflow applies to R2019a and later releases. For R2018b and earlier releases, see
“Borrow Licenses”.

To borrow a license, use the lmutil binary that is available with the license manager installation.

The binary is in the same folder as the lmgrd and MLM binaries, for instance installFolder
\win64\etc, where installFolder is the license manager installation folder. If you do not know
the location of this folder contact your Polyspace license administrator.

To borrow a license:

1 Copy the lmutil binary from the license server machine to the machine from which you want to
borrow a license.

2 Run the following command by using this format to specify the borrow period end date, and
optionally, the end time:

lmutil lmborrow MLM dd-Mmm-YYYY hh:mm

For instance, to borrow a license until January 20, 2021 a 1pm, enter:

 lmutil lmborrow MLM 20-Jan-2021 13:00
3 Run the product whose license you want to borrow. For instance, use the Polyspace Bug Finder

desktop product to analyze a small source file.

Run this command to check the borrow status of your license:

lmutil lmborrow -status
4 Disconnect your machine from the network and continue using your Polyspace product.

So that you do not borrow licenses for other products, after step 3, run this command:

lmutil lmborrow -clear

Return Polyspace License

To return your borrowed license before the end of the borrow period:

1 Connect your machine to the network of the license manager.
2 Enter the following command by using this format to specify the license server port and host

name, and the name of the feature whose license you are returning:

lmutil lmborrow -return -c serverPort@serverHostname featureName

For instance, to return a Polyspace Bug Finder desktop license (Polyspace_BF), enter:

lmutil lmborrow -return -c 27000@licenseMgrHostName Polyspace_BF

Contact your Polyspace license administrator for the license server port and host name.

Update Polyspace Products
To install the most recent update for Polyspace desktop or server products, close all running sessions
of Polyspace, then run the update installer binary. The binary is part of your original Polyspace

 Install Polyspace Server and Access Products

2-7

installation. Each update includes all the fixes from previous updates. To update the Polyspace
desktop and server products, run the update installer twice, once for each Polyspace base product.

Note This update procedure is for R2019a and later releases only.

Install Update on Machine Connected to Internet

1 Open a command-line window and navigate to a folder that corresponds to your platform.

Windows polyspaceroot\bin\win64
Linux polyspaceroot/bin/glnxa64
macOS polyspaceroot/bin/maci64

polyspaceroot is the Polyspace installation folder, for instance C:\Progam Files
\Polyspace\R2019a.

2 At the command line, enter the command that corresponds to your platform.

Windows update_installer.exe

Linux/macOS ./update_installer

Alternatively, you can open the update installer folder in a file explorer then double-click the
update_installer binary.

To complete the update, follow the prompts in the UI.

Install Update on Machine Without Internet

To install a Polyspace update on a machine that is not connected to Internet, download the update
package to an online computer. Then, run the update installer binary on the machine that is not
connected to the Internet and use the -updatepackage option . You can use this workflow to run the
update installer without a UI, for example to install an update on a server machine without a display.

1 Go to https://www.mathworks.com/downloads/web_downloads/
download_update_installers/R20XXy and download the update package that corresponds
to your platform to an online computer.

R20XXy is the release version of the update, for instance R2019a.
2 Unzip the update package to a location that is accessible from the machine where you want to

install the update, for example, a network drive.
3 On the machine where you want to install the update, open a command-line window and navigate

to the folder that corresponds to your platform.

Windows polyspaceroot\bin\win64
Linux polyspaceroot/bin/glnxa64
macOS polyspaceroot/bin/maci64

polyspaceroot is the Polyspace installation folder, for instance C:\Progam Files
\Polyspace\R2019a.

4 At the command line, enter the command that corresponds to your platform.

2 Install and Configure Polyspace Code Prover Server

2-8

Windows update_installer.exe -updatepackage package_folder

Linux/macOS ./update_installer -updatepackage package_folder

package_folder is the full path to the folder where you unzipped the update package. The
update installer runs silently and does not output any messages.

Check Update Installer Log and Update Version

To see the installation status if you run the update installer silently, or to check for errors in the
installation update process, open the installer log file that is stored in your platform temporary folder.

Windows \%TEMP%\mathworks_yourusername.log
Linux/macOS /tmp/mathworks_yourusername.log

To check the version of the Polyspace update that is installed, go to the Polyspace installation folder
and open VersionInfo.xml. The update version is listed inside the <description/> tag, for
example:

...
 <release>R2019a</release>
 <description>Update 4</description>
...

If no update is installed, the <description/> tag is empty.

See Also

More About
• “Run Polyspace Code Prover on Server and Upload Results to Web Interface” on page 3-2
• “Send Email Notifications with Polyspace Code Prover Server Results” on page 3-8
• “Install Polyspace Desktop Products” (Polyspace Code Prover)
• “Update or Uninstall Polyspace Access” (Polyspace Code Prover Access)

 Install Polyspace Server and Access Products

2-9

Install Products for Submitting Polyspace Analysis from
Desktops to Remote Server

You can perform a Polyspace analysis locally on your desktop or offload the analysis to one or more
dedicated remote servers. This topic shows how to set up the dispatch of Polyspace analysis from
desktop clients to remote servers. Once configured, you can send the Polyspace analysis to a remote
server and view the downloaded results on your desktop.

Choose Between Local and Remote Analysis
To determine when to use local or remote analysis, use the rules listed in this table.

Type When to Use
Remote Source files are large and execution time of analysis is lengthy. Typically, a

Code Prover analysis takes significantly longer than a Bug Finder analysis
and benefits from running on a dedicated server.

Local Source files are small and execution time of analysis is short.

Requirements for Remote Analysis
A typical distributed network for running remote analysis consists of these parts:

• Client nodes: On the client node, you configure your Polyspace project or scripts, and then
submit a job that runs Polyspace.

• Head node: The head node distributes the submitted jobs to worker nodes.
• Worker node(s): The Polyspace analysis runs on a worker node.

2 Install and Configure Polyspace Code Prover Server

2-10

In this workflow, you install the product MATLAB Parallel Server™ to manage submissions from
multiple clients. An analysis job is created for each submission and placed in a queue. As soon as a
worker node is available, the next analysis job from the queue is run on the worker.

This table lists the product requirements for remote analysis.

Location Requirements Installation
Client node Polyspace Bug Finder

A Polyspace Bug Finder license is sufficient to trigger a
Bug Finder or Code Prover analysis on the server and
review the downloaded analysis results.

Run the MathWorks installer
on the client desktops. Choose
a license for Polyspace
desktop products.

For detailed instructions, see
“Installation and Licensing”.

 Install Products for Submitting Polyspace Analysis from Desktops to Remote Server

2-11

https://www.mathworks.com/downloads/

Location Requirements Installation
Head node MATLAB Parallel Server (earlier called MATLAB

Distributed Computing Server)
Run the MathWorks installer
on the server(s). Choose a
license for MATLAB Parallel
Server installation.

For detailed instructions, see
“Install and Configure
MATLAB Parallel Server for
MATLAB Job Scheduler and
Network License Manager”
(MATLAB Parallel Server).

Worker
nodes

• MATLAB Parallel Server (earlier called MATLAB
Distributed Computing Server)

• Polyspace Bug Finder Server
• Polyspace Code Prover Server (if you choose to run

Code Prover)

To install:

• MATLAB Parallel Server,
run the MathWorks
installer on the server(s).
Choose a license for
MATLAB Parallel Server
installation.

• Polyspace Bug Finder
Server and/or Polyspace
Code Prover Server, run
the MathWorks installer.
Choose a license for
Polyspace server products.

In the simplest remote analysis configuration, the same computer can serve as the head node and
worker node.

Selecting Number of Workers

To select the number of worker nodes to allocate, consider the following:

• Polyspace does not distribute a single analysis over multiple workers and executes one analysis
entirely on one worker node. Do not expect an individual analysis to speed up if you use multiple
workers (unless you run a file by file verification in Code Prover).

Only if the head node processes more than one analysis job at the same time can you benefit from
multiple workers. This scenario is likely if multiple clients submit analysis jobs within a short time
window.

• Each worker node must have a license available for executing the Polyspace analysis. Otherwise, a
worker node might wait for a license to be released and you might not benefit from multiple
workers.

Make sure that you do not allocate more workers than the number of licenses available.

Using MATLAB Parallel Server for distributing Polyspace jobs is different from other uses of MATLAB
Parallel Server where a single job can be parallelized over multiple workers.

2 Install and Configure Polyspace Code Prover Server

2-12

https://www.mathworks.com/downloads/
https://www.mathworks.com/downloads/
https://www.mathworks.com/downloads/
https://www.mathworks.com/downloads/

Configure and Start Server
On the computers that act as the worker nodes of the server, you install MATLAB Parallel Server and
the Polyspace server products in two separate folders. The MATLAB Parallel Server installation must
know where the Polyspace server products are located so that it can route the Polyspace analysis. To
link the two installations, specify the paths to the root folder of the Polyspace server products in your
MATLAB Parallel Server installations.

Then configure and start MATLAB Parallel Server (the mjs service) on all computers that act as the
head node and worker nodes.

Configure mjs Service Settings

Before starting services, you must configure the mjs service settings.

1 Navigate to matlabroot\toolbox\parallel\bin, where matlabroot is the MATLAB
Parallel Server installation folder, for instance, C:\Program Files\MATLAB\R2021a.

2 Modify the file mjs_def.bat (Windows) or mjs_def.sh (Linux). To edit and save the file, you
have to open your editor in administrator mode.

Read the instructions in the file and uncomment the lines as needed. At a minimum, you might
have to uncomment these lines:

• Hostname:

REM set HOSTNAME=%strHostname%.%strDomain%

in Windows or

#HOSTNAME=`hostname -f`

in Linux. Explicitly specify your computer host name.
• Security level:

REM set SECURITY_LEVEL=

in Windows or

#SECURITY_LEVEL=""

in Linux. Explicitly specify a security level.

Otherwise, you might see an error later when starting the job scheduler.

Specify Polyspace Installation Paths

When you offload an analysis using a Polyspace desktop product installation, the server must run the
analysis using a Polyspace server product installation from the same release. For instance, if you
offload an analysis from an R2021a desktop product, the analysis must run using the R2021a server
product. To ensure that the correct Polyspace server product is used, you must specify the installation
paths of the Polyspace server products in your MATLAB Parallel Server installations.

To specify the Polyspace installation paths:

 Install Products for Submitting Polyspace Analysis from Desktops to Remote Server

2-13

1 Navigate to matlabroot\toolbox\parallel\bin\. Here, matlabroot is the MATLAB
installation folder, for instance, C:\Program Files\MATLAB\R2021a.

2 Uncomment and modify the following line in the file mjs_polyspace.conf. To edit and save the
file, you have to open your editor in administrator mode.

POLYSPACE_SERVER_ROOT=polyspaceserverroot

Here, polyspaceserverroot is the installation path of the server products, for instance:

C:\Program Files\Polyspace Server\R2021a

If you use multiple releases of Polyspace desktop and server products, the MATLAB Parallel Server
release must be the later one. For instance, if you offload analysis jobs using both R2019a and
R2019b Polyspace desktop and server products, the MATLAB Parallel Server installation must be an
R2019b one. See also “Submit Analysis Jobs from Multiple Releases of Polyspace” on page 2-18.

Start mjs Service and Assign as Head Node or Worker Node

To configure a server with multiple workers, start the service that runs a job scheduler (the mjs
service) on the computer that acts as the head node and all computers that act as worker nodes. In
the simplest configuration, the same computer can act as the head node and a worker node.

To set up a cluster with one head node and several workers, on the computer that acts as the head
node:

1 Open the Admin Center window. Navigate to matlabroot\toolbox\parallel\bin\ and
execute the file admincenter.bat (Windows) or admincenter.sh (Linux). Here, matlabroot
is the MATLAB installation folder, for instance, C:\Program Files\MATLAB\R2021a.

2 Install and Configure Polyspace Code Prover Server

2-14

2 In the Hosts section, add the host names of all computers that you want to use as head and
worker nodes of the cluster. Start the mjs service.

The service uses the settings specified in the file mjs_def.bat (Windows) or mjs_def.sh
(Linux).

3 Right-click each host. Select either Start MJS (head node) or Start Workers (worker nodes).

The hosts appear in the MATLAB Job Scheduler or Workers section. In each section, select the
host and click Start to start the MATLAB Job Scheduler or the workers.

Selecting a computer as host starts the mjs service on that computer. You must have permission to
start services on other computers in the network. For instance, on Windows, you must be in the
Administrators group for other computers where you want to start the mjs service. Otherwise, you
have to start the mjs services individually on each computer that acts as a worker.

For more details and command-line workflows, see:

• “Install and Configure MATLAB Parallel Server for MATLAB Job Scheduler and Network License
Manager” (MATLAB Parallel Server)

• mjs

 Install Products for Submitting Polyspace Analysis from Desktops to Remote Server

2-15

Configure Client
Configure the client node so that it can communicate with the computer that serves as the head node
of the MATLAB Parallel Server cluster. For scheduling jobs, you can use the job scheduler that comes
with MATLAB Parallel Server (MATLAB Job Scheduler). If you were already using a third-party
scheduler such as HPC Server or PBS Professional, you can continue to use that scheduler.

Use MATLAB Job Scheduler

Configure the client node in the user interface of the Polyspace desktop products:

1 Select Tools > Preferences.
2 Click the Server Configuration tab. Under MATLAB Parallel Server cluster configuration:

a In the Job scheduler host name field, specify the computer for the head node of the
cluster. This computer hosts the MATLAB job scheduler.

If the port used on the computer hosting the MATLAB job scheduler is different from 27350,
enter the port name explicitly with the notation hostName:portNumber.

b Due to the network setting, the job scheduler may be unable to connect back to your local
computer. If so, enter the IP address of the client computer in the Localhost IP address
field.

Create a Cluster Profile for Job Scheduling

Cluster profiles let you define certain properties for your cluster, such as number of threads per
worker, timeouts, callbacks, and so on. For more information on cluster profiles, see “Discover
Clusters and Use Cluster Profiles” (Parallel Computing Toolbox).

For instance, instead of the job scheduler provided with MATLAB Parallel Server, you can use a third
party scheduler such as HPC Server or PBS Professional. You can create a cluster profile to use the
third-party scheduler. You can also create a cluster profile that uses the MATLAB job scheduler but
with nondefault properties. For instance, if you start the job manager with a certificate using the -
certificate flag, you can create a cluster profile that uses this job manager.

To create and use a cluster profile:

2 Install and Configure Polyspace Code Prover Server

2-16

1 In the Polyspace user interface, select Tools > Preferences.
2 In the Polyspace Preferences window, click the Settings button beside Cluster Profile

Manager.
3 In the Cluster Profile Manager window, click Add Cluster Profile. Select a third-party scheduler.

You see a default cluster profile using this scheduler.

4 Specify the properties of the cluster profile.

a Click Edit. Modify the default properties as needed.
b Click Validate. At a minimum, the cluster connection test and the job test must complete.

5 In the Polyspace Preferences window, for Job scheduler host name, specify the cluster profile
name that you just created (for instance, HPCServerProfile1 in the example above).

Offload Polyspace Analysis from Desktop to Server
Once the configuration is over, you can offload an analysis from a Polyspace desktop product
installation to a remote server. You can do one of the following:

 Install Products for Submitting Polyspace Analysis from Desktops to Remote Server

2-17

• Start a remote analysis from the user interface of the Polyspace desktop products.

See “Send Polyspace Analysis from Desktop to Remote Servers”.
• Start a remote analysis with Windows or Linux scripts.

See “Send Polyspace Analysis from Desktop to Remote Servers Using Scripts”. In the simplest
configuration, the same computer can be used as a client and server. For a simple tutorial that
uses this configuration and walks through all the steps for offloading a Polyspace analysis, see
“Send Code Prover Analysis from Desktop to Locally Hosted Server” on page 4-2.

• Start a remote analysis with MATLAB scripts.

See “Run Analysis on Server” (Polyspace Code Prover).

Submit Analysis Jobs from Multiple Releases of Polyspace
If you upgrade to a newer release of Polyspace products, you can continue to submit jobs from both
the older and the new releases. For instance, suppose that you were using the R2019a release of
Polyspace products and MATLAB Parallel Server. When you upgrade to the R2019b releases of the
two sets of products, you can continue to submit jobs from the older releases.

The setup for handling multiple releases of Polyspace, for instance, R2019a and R2019b, looks like
this:

To support submissions from multiple releases with a single MATLAB Parallel Server cluster, you have
to link the various installations of Polyspace products and MATLAB Parallel Server. Of the links
shown in the preceding figure, the links numbered 1, 2 and 5 are part of a regular server-client
installation using all products from the same release. To create all the links, do these steps:

2 Install and Configure Polyspace Code Prover Server

2-18

1 In the R2019b installation of the Polyspace desktop products, open the user interface and select
Tools > Preferences. Specify the computer that acts as the head node of the R2019b MATLAB
Parallel Server cluster, as described earlier.

If you are able to submit jobs from R2019b Polyspace desktop products, you have already done
this step.

2 In the R2019b installation of the MATLAB Parallel Server products, edit the
mjs_polyspace.conf file to point to the R2019b installation of the Polyspace Server products,
as described earlier.

If your R2019b installation of MATLAB Parallel Server can run an analysis using R2019b
Polyspace Server products, you have already done this step.

3 In the R2019a installation of the Polyspace desktop products, open the user interface and select
Tools > Preferences. Specify the computer that acts as the head node of the R2019b MATLAB
Parallel Server cluster.

If you install the R2019b version of MATLAB Parallel Server on the same computer as the R2019a
version, you have already done this step. Otherwise, this step might be new in the multi-release
workflow.

4 In the R2019b installation of the MATLAB Parallel Server products, edit the file mjs_def.bat or
mjs_def.sh (located in matlabroot\toolbox\parallel\bin\) to refer to the earlier
release. Find the line with MJS_ADDITIONAL_MATLABROOTS and edit it as follows. To edit and
save the file, you have to open your editor in administrator mode.

set MJS_ADDITIONAL_MATLABROOTS=othermatlabroot

Here, othermatlabroot is the installation path of the MATLAB Parallel Server installation from
the earlier release, for instance:

C:\Program Files\MATLAB\R2019a

This step is new in the multi-release workflow.
5 In the R2019a installation of the MATLAB Parallel Server products, edit the

mjs_polyspace.conf file to point to the R2019a installation of the Polyspace Server products,
as described earlier.

If your R2019a installation of MATLAB Parallel Server can run an analysis using R2019a
Polyspace Server products, you have already done this step.

Note

• The lowest release of MATLAB Parallel Server that can be mixed with the current release using
this workflow is R2016a.

• For releases from R2016a to R2018b,.the server side configuration is different from releases
R2019a and later. Consult the documentation for older releases for step 5 above. However, if you
are already submitting jobs from a pre-R2019a Polyspace installation using a pre-R2019a MATLAB
Parallel Server installation, you have presumably done this step.

 Install Products for Submitting Polyspace Analysis from Desktops to Remote Server

2-19

See Also

Related Examples
• “Send Polyspace Analysis from Desktop to Remote Servers”
• “Send Polyspace Analysis from Desktop to Remote Servers Using Scripts”
• “Send Code Prover Analysis from Desktop to Locally Hosted Server” on page 4-2
• “Install and Configure MATLAB Parallel Server for Third-Party Schedulers” (MATLAB Parallel

Server)
• “Troubleshoot Common Problems” (MATLAB Parallel Server)

2 Install and Configure Polyspace Code Prover Server

2-20

Run Polyspace Code Prover Server After
Code Submission

3

Run Polyspace Code Prover on Server and Upload Results to
Web Interface

Polyspace Code Prover Server proves the absence of run-time errors in C/C++ code, and then
uploads findings to a web interface for code review.

You can run Code Prover as part of continuous integration. Set up scripts that run a Code Prover
analysis at regular intervals or based on new code submissions. The scripts can upload the analysis
results for review in the Polyspace web interface and optionally send emails to owners of source files
with Polyspace findings. The owners can open the web interface to review only the new findings from
their submission, and then fix or justify the issues.

In a typical project or team, Polyspace Code Prover Server runs periodically on a few testing servers
and uploads the results for review. Each developer and quality engineer in the team has a Polyspace
Code Prover Access license to view the results in the web interface for investigation and bug fixing.

Prerequisites
To run a Code Prover analysis on a server and review the results in the Polyspace Code Prover Access
web interface, perform this one-time setup:

• To run the analysis, install one instance of the Polyspace Code Prover Server product.
• To upload results, set up the components required to host the web interface of Polyspace Code

Prover Access.

3 Run Polyspace Code Prover Server After Code Submission

3-2

• To view the uploaded results, you and each developer reviewing the results must have a Polyspace
Code Prover Access license.

See “Install Polyspace Server and Access Products” on page 2-2.

Check Polyspace Installation
To check if Polyspace Code Prover Server is installed:

1 Open a command window. Navigate to polyspaceserverroot\polyspace\bin. Here,
polyspaceserverroot is the Polyspace Code Prover Server installation folder, for instance,
C:\Program Files\Polyspace Server\R2021a. See also “Installation Folder” on page 2-4.

2 Enter:

polyspace-code-prover-server -help

You should see the list of options allowed for a Code Prover analysis.

To check if the Polyspace web interface is set up for upload:

1 Navigate again to polyspaceserverroot\polyspace\bin.
2 Enter:

polyspace-access -host hostName -port portNumber -create-project testProject

Here, hostName is the name of the server hosting the Polyspace Code Prover Access web server.
For a locally hosted server, use localhost. portNumberI is the optional port number of the
server. If you omit the port number, 9443 is used.

If the setup was complete, a project called testProject is created in the Polyspace web
interface.

You are prompted for your login and password each time you use the polyspace-access
command. To avoid entering login information each time, provide the login and an encrypted
version of your password with the command. To create an encrypted password, enter:

polyspace-access -encrypt-password

Enter your login and password. Copy the encrypted password and provide this encrypted
password with the -encrypted-password option when using the polyspace-access
command.

3 In a web browser, open this URL:

https://hostName:portNumber/metrics/index.html

Here, hostName and portNumber are the host name and port number from the previous step.

In the Project Explorer pane on the Polyspace web interface, you should see the newly created
project testProject.

 Run Polyspace Code Prover on Server and Upload Results to Web Interface

3-3

Run Code Prover on Sample Files
To run Code Prover, in your operating system, open a command window.

1 To run a Code Prover analysis, use the polyspace-code-prover-server command.
2 To upload the results to the Polyspace web interface, use the polyspace-access command.

To avoid typing the full path to the command, add the path polyspaceserverroot\polyspace
\bin to the Path environment variable on your operating system.

Try out the commands on sample files provided with your Polyspace installation.

1 Copy the sample source files from polyspaceserverroot\polyspace\examples\cxx
\Code_Prover_Example\sources to another folder where you have write permissions.
Navigate to this folder at the command line.

2 Enter:

polyspace-code-prover-server -sources example.c,single_file_analysis.c
 -I . -main-generator -results-dir .
polyspace-access -host hostName -port portNumber
 -login username -encrypted-password pwd
 -create-project testProject
polyspace-access -host hostName -port portNumber
 -login username -encrypted-password pwd
 -upload . -project myFirstProject -parent-project testProject

Here, username is your login name and pwd is the encrypted password that you created
previously. See “Check Polyspace Installation” on page 3-3.

Refresh the Polyspace web interface. You see the newly uploaded results under the testProject
folder in the Project Explorer pane.

To see the results in the project, click Review. For more information, see Polyspace Code Prover

Access documentation. You can also access the documentation using the button in the
upper right of the Polyspace Access interface.

The options used with the polyspace-code-prover-server command are:

• -sources: Specify comma-separated source files.

3 Run Polyspace Code Prover Server After Code Submission

3-4

• -I: Specify path to include folder. Use the -I flag each time you want to add a separate include
folder.

• -results-dir: Specify the path to the folder where Polyspace Code Prover results will be saved.

Note that the results folder is cleaned up and repopulated at each run. To avoid accidental
removal of files during the cleanup, instead of using an existing folder that contains other files,
specify a dedicated folder for the Polyspace results.

• Verify module or library (-main-generator): Specify that a main function must be
generated if not found in the source files

For the full list of options available for a Code Prover analysis, see “Analysis Options in Polyspace
Code Prover Server”. To open the Code Prover documentation in a help browser, enter:

polyspace-code-prover-server -doc

Sample Scripts for Code Prover Analysis on Servers
To run the analysis, instead of typing the commands at the command line, you can use scripts. The
scripts can execute each time that you add or modify source files.

A sample Windows batch file is shown below. Here, the path to the Polyspace installation is specified
in the script. To use this script, replace polyspaceserverroot with the path to your installation.
You must have already generated the encrypted password for use in the scripts. See “Check
Polyspace Installation” on page 3-3.

echo off
set POLYSPACE_PATH=polyspaceserverroot\polyspace\bin
set LOGIN=-host hostName -port portNumber -login username -encrypted-password pwd
"%POLYSPACE_PATH%\polyspace-code-prover-server"
 -sources example.c,single_file_analysis.c -I .^
 -main-generator -results-dir .
"%POLYSPACE_PATH%\polyspace-access" %LOGIN% -create-project testProject
"%POLYSPACE_PATH%\polyspace-access" %LOGIN% -upload . -project myFirstProject
 -parent-project testProject
pause

A sample Linux shell script is shown below.

echo off
set POLYSPACE_PATH=polyspaceserverroot\polyspace\bin
set LOGIN=-host hostName -port portNumber -login username -encrypted-password pwd
"%POLYSPACE_PATH%\polyspace-code-prover-server"
 -sources example.c,single_file_analysis.c -I .^
 -main-generator -results-dir .
"%POLYSPACE_PATH%\polyspace-access" %LOGIN% -create-project testProject
"%POLYSPACE_PATH%\polyspace-access" %LOGIN% -upload . -project myFirstProject
 -parent-project testProject
pause

 Run Polyspace Code Prover on Server and Upload Results to Web Interface

3-5

Specify Sources and Options in Separate Files from Launching Scripts
Instead of listing the source files and analysis options within the launching scripts, you can list them
in separate text files.

• Specify the text file listing the sources by using the option -sources-list-file.
• Specify the text file listing the analysis options by using the option -options-file.

By removing the source files and analysis option specifications from the launching scripts, you can
modify these specifications as required with new code submissions while leaving the launching script
untouched.

Consider the script in the preceding example. You can modify the polyspace-code-prover-
server command to use text files with sources and options. Instead of:

polyspace-code-prover-server -sources example.c,single_file_analysis.c -I .
 -main-generator -results-dir .

use:

polyspace-code-prover-server -sources-list-file sources.txt
 -options-file polyspace_opts.txt -results-dir .

Here:

• sources.txt lists the source files:

example.c
single_file_analysis.c

• polyspace_opts.txt lists the analysis options in separate lines:

-I .
-main-generator

Typically, your source files are specified in a build command (makefile). Instead of specifying the
source files directly, you can trace the build command to create a list of source specifications. See
polyspace-configure.

Complete Workflow
In a typical continuous integration workflow, you run a script that executes these steps:

1 Extract Polyspace options from your build command.

For instance, if you use makefiles to build your source code, you can extract analysis options
from the makefile.

polyspace-configure -output-options-file compile_opts make

See also:

• polyspace-configure

3 Run Polyspace Code Prover Server After Code Submission

3-6

• “Create Polyspace Analysis Configuration from Build Command”
2 Run the analysis with the previously created options file. Append a second options file that

contains the remaining options required for the analysis.

polyspace-code-prover-server -options-file compile_opts -options-file run_opts

See “Prepare Scripts for Polyspace Analysis”.
3 Upload the results to Polyspace Code Prover Access.

polyspace-access login -upload resultsFolder -project projName
 -parent-project parentProjName

Here, login is the combination of options required to communicate with the web server that is
hosting Polyspace Code Prover Access:

-host hostName -port portNumber -login username -encrypted-password pwd

resultsFolder is the folder containing the Polyspace results. projName and parentProjName
are names of the project and parent folder as they would appear in the Polyspace Code Prover
Access web interface.

4 Optionally, send email notifications to developers with new results from their code submission.
The email contains attachments with links to the results in the Polyspace Code Prover Access
web interface.

See “Send Email Notifications with Polyspace Code Prover Server Results” on page 3-8.

See examples of scripts executing these steps in “Sample Scripts for Polyspace Analysis with
Jenkins”.

See Also
polyspace-access | polyspace-code-prover-server

More About
• “Send Email Notifications with Polyspace Code Prover Server Results” on page 3-8
• “Send Code Prover Analysis from Desktop to Locally Hosted Server” on page 4-2
• “Analysis Options in Polyspace Code Prover Server”

 Run Polyspace Code Prover on Server and Upload Results to Web Interface

3-7

Send Email Notifications with Polyspace Code Prover Server
Results

If you run a Polyspace analysis as part of continuous integration, each new code submission produces
new results. You not only see new results in components that were modified but also in components
that depended on the modified components. You can set up e-mail alerts so that component owners
get notified when new Polyspace results appear in their components.

Creating E-mail Notifications
To create e-mail notifications:

1 Export new analysis results to a tab-delimited text file (.tsv format).

Apply filters to export specific types of results, for instance, defects with high impact. If required,
you can also apply additional filters to the exported files using search and replace utilities. See
“Export Results for E-mail Attachments” on page 3-10.

2 Send an email with the results file in attachment. For each result, the attachment contains links
to open the result in the Polyspace Code Prover Access web interface.

For instance, if you use an e-mail plugin in Jenkins, you can create a post-build step to send an e-
mail after the analysis is complete.

3 Run Polyspace Code Prover Server After Code Submission

3-8

If you use the Polyspace plugin in Jenkins, you can use Polyspace helper utilities for the entire e-mail
notification process. See “Sample Scripts for Polyspace Analysis with Jenkins”

Alternatively, results can be directly assigned to owners based on their file paths. You can set up
email notifications that exports a separate results file per owner and sends an email to each owner
with the corresponding results file in attachment.

Prerequisites
To run this tutorial:

• You must have uploaded some result in the Polyspace Code Prover Access interface. If you
complete the tutorial “Run Polyspace Code Prover on Server and Upload Results to Web Interface”
on page 3-2, you should see a folder testProject on the Project Explorer pane. The folder
contains one project myFirstProject.

To see the results in the project, with myFirstProject selected, click the Review button. You
see a list of run-time checks. The Type column shows the color of the checks. In this tutorial, only
red checks will be exported for e-mail attachments.

• You must be able to interact with the Polyspace Code Prover Access interface from the command
line. For instance, navigate to polyspaceserverroot\polyspace\bin and enter:

polyspace-access login -list-project

Here. polyspaceserverroot is the Polyspace Code Prover Server installation folder, for
instance, C:\Program Files\Polyspace Server\R2021a.The variable login refers to the
following combination of options. You provide these options with every use of the polyspace-
access command.

-host hostName -port portNumber -login username -encrypted-password pwd

Here, hostName is the name of the Polyspace Code Prover Access web server. For a locally hosted
server, use localhost. portNumber is the optional port number of the server. If you omit the

 Send Email Notifications with Polyspace Code Prover Server Results

3-9

port number, 9443 is used. username and pwd refer to the login and an encrypted version of your
password. To create an encrypted password, enter:

polyspace-access -encrypt-password

Copy the encrypted password and provide this password with later uses of the polyspace-
access command.

Export Results for E-mail Attachments
You can export all results in a project or only certain types of results.

Open a command window. Navigate to the folder where you want to export the results.

• To export all results, enter the following:

polyspace-access login -export testProject/myFirstProject -output .\result.txt

• To export only red checks, enter the following:

polyspace-access login -export testProject/myFirstProject
 -rte Red -output .\result_red_checks.txt

Open each text file in a spreadsheet viewing utility such as Microsoft® Excel®. In the first file, you see
all results but in the second file, you only see the red run-time checks. Instead of -rte Red, you can
apply other filters.

• To see only new results compared to the previous analysis of the same project, use the option -
new-findings.

• To apply a more fine-grained set of filters, you can use software quality objectives (SQOs). The
software quality objectives are specified through a progressively stricter set of SQO levels,
numbered from 1 to 6. You can customize the requirements of each level in the Polyspace Access
web interface, and then use the option -open-findings-for-sqo with the level number to
export only those results that must be reviewed to meet the requirements. See also “Software
Quality Objectives” (Polyspace Code Prover Access).

To see all filtering options, enter:

polyspace-access -h -export

You can configure your e-mail utility to send these exported files in attachment.

If required, you can also apply additional filters to the exported files using search and replace
utilities. For instance, use search and replace utilities on the results file to include results only from
specific files and functions. In Linux, you can use grep and sed to retain only results in specific files.

Assign Owners and Export Assigned Results
You can assign owners to results in specific files or folders. You can then export one result file per
owner and send an email to each owner with the corresponding file in attachment.

3 Run Polyspace Code Prover Server After Code Submission

3-10

You can assign owners in the Polyspace Code Prover Access web interface or at the command line.

In this tutorial, assign all results in the file example.c to jsmith and all results in the file
single_file_analysis.c to jboyd.

polyspace-access login
 -set-unassigned-findings testProject/myFirstProject
 -owner jsmith -source-contains example.c
polyspace-access login
 -set-unassigned-findings testProject/myFirstProject
 -owner jboyd -source-contains single_file_analysis.c

After assignment, export one results file per owner.

polyspace-access -host login
 -export testProject/myFirstProject -output .\results.txt -output-per-owner

These files contain the exported results:

• results.txt contains all results.
• results_jsmith.txt and results_jboyd.txt contains results assigned to jsmith and

jboyd respectively.
• results.txt.owners.list contains the list of owners, in this case:

jsmith
jboyd

Before assigning owners to results, use the option -dryrun to perform a dry run of the assignments.
Without performing the assignment, the option shows the files with results that are assigned and the
owner that the results are assigned to.

See Also
polyspace-access

 Send Email Notifications with Polyspace Code Prover Server Results

3-11

Run Polyspace Code Prover Server Prior
to Code Submission

4

Send Code Prover Analysis from Desktop to Locally Hosted
Server

You can perform a Polyspace analysis locally on your desktop or offload the analysis to one or more
dedicated servers. This topic shows a simple server-client configuration for offloading the Polyspace
analysis. In this configuration, the same computer acts as a client that submits a Polyspace analysis
and a server that runs the analysis.

You can extend this tutorial to more complex configurations. For full setup and workflow instructions,
see related links below.

Client-Server Workflow for Running Bug Finder Analysis
After the initial setup, you can submit a Polyspace analysis from a client desktop to a server. The
client-server workflow happens in three steps. All three steps can be performed on the same
computer or three different computers. This tutorial uses the same computer for the entire workflow.

1 Client node: You specify Polyspace analysis options and start the analysis on the client desktop.
The initial phase of analysis till compilation runs on the desktop. After compilation, the analysis
job is submitted to the server.

You require the Polyspace desktop product, Polyspace Bug Finder on the computer that acts as
the client node.

2 Head node: The server consists of a head node and several worker nodes. The head node uses a
job scheduler to manage submissions from multiple client desktops. The jobs are then distributed
to the worker nodes as they become available.

You require the product MATLAB Parallel Server on the computer that acts as the head node.
3 Worker nodes: When a worker becomes available, the job scheduler assigns the analysis to the

worker. The Polyspace analysis runs on the worker and the results are downloaded back to the
client desktop for review.

You require the product MATLAB Parallel Server on the computers that act as worker nodes. You
also require the Polyspace server products, Polyspace Bug Finder Server and Polyspace Code
Prover Server, to run the analysis.

4 Run Polyspace Code Prover Server Prior to Code Submission

4-2

See also “Install Products for Submitting Polyspace Analysis from Desktops to Remote Server” on
page 2-10.

Prerequisites
This tutorial uses the same computer as client and server. You must install the following on the
computer:

• Client-side product: Polyspace Bug Finder
• Server-side products: MATLAB Parallel Server, Polyspace Bug Finder Server and Polyspace Code

Prover Server.

For more information, see “Install Products for Submitting Polyspace Analysis from Desktops to
Remote Server” on page 2-10.

You must know the host name of your computer. For instance, in Windows, open a command-line
terminal and enter:

hostname

Configure and Start Server

 Send Code Prover Analysis from Desktop to Locally Hosted Server

4-3

Stop Previous Services

If you started the services of MATLAB Parallel Server previously, make sure that you have stopped all
services. In particular, you might have to:

• Check your temporary folder, for instance, C:\Windows\Temp in Windows, and remove the MDCE
folder if it exists.

• Stop all services explicitly.

Open a command-line terminal. Navigate to matlabroot\toolbox\parallel\bin (using cd)
and enter the following:

mjs uninstall -clean

Here, matlabroot is the MATLAB Parallel Server installation folder, for instance, C:\Program
Files\MATLAB\R2021a.

If this is the first time you are starting the services, you do not have to do these steps.

Configure mjs Service Settings

Before starting services, you have to configure the mjs service settings. Navigate to matlabroot
\toolbox\parallel\bin, where matlabroot is the MATLAB Parallel Server installation folder, for
instance, C:\Program Files\MATLAB\R2021a. Modify these two files. To edit and save these files,
you have to open your editor in administrator mode.

• mjs_def.bat (Windows) or mjs_def.sh (Linux)

Read the instructions in the file and uncomment the lines as needed. At a minimum, you might
have to uncomment these lines:

• Hostname:

REM set HOSTNAME=myHostName

in Windows or

#HOSTNAME=`hostname -f`

in Linux. Remove the REM or # and explicitly specify your computer host name.
• Security level:

REM set SECURITY_LEVEL=

in Windows or

#SECURITY_LEVEL=""

in Linux. Remove the REM or # and explicitly specify a security level.

Otherwise, you might see an error later when starting the job scheduler.
• mjs_polyspace.conf

Modify and uncomment the line that refers to a Polyspace server product root. The line should
refer to the release number and root folder of your Polyspace server product installation. For

4 Run Polyspace Code Prover Server Prior to Code Submission

4-4

instance, if the R2021a release of Polyspace Code Prover Server is installed in the root folder
C:\Program Files\Polyspace Server\R2021a, modify the line to:

POLYSPACE_SERVER_ROOT=C:\Program Files\Polyspace Server\R2021a

Otherwise, the MATLAB Parallel Server installation cannot locate the Polyspace Code Prover
Server installation to run the analysis.

Start Services

Start the mjs services and assign the current computer as both the head node and a worker node.

Navigate to matlabroot\toolbox\parallel\bin, where matlabroot is the MATLAB Parallel
Server installation folder, for instance, C:\Program Files\MATLAB\R2021a. Run these commands
(directly at the command line or using scripts):

mjs install
mjs start
startjobmanager -name JobScheduler -remotehost hostname -v
startworker -jobmanagerhost hostname -jobmanager JobScheduler
 -remotehost hostname -v

Here, hostname is the host name of your computer. This is the host name that you specified in the
file mjs_def.bat (Windows) or mjs_def.sh (Linux).

Instead of the command line, you can also start the services from the Admin Center interface. See
“Install Products for Submitting Polyspace Analysis from Desktops to Remote Server” on page 2-10.

For more information on the commands, see “Configure Advanced Options for MATLAB Job Scheduler
Integration” (MATLAB Parallel Server).

Configure Client
Open the user interface of the desktop product, Polyspace Bug Finder (or Polyspace Code Prover).
Navigate to polyspaceroot\polyspace\bin, where polyspaceroot is the Polyspace desktop
product installation folder, for instance, C:\Program Files\Polyspace\R2021a and double-click
the polyspace executable.

Select Tools > Preferences. On the Server configuration tab, enter the host name of your
computer for Job scheduler host name.

 Send Code Prover Analysis from Desktop to Locally Hosted Server

4-5

You are now set up for the server-client workflow.

Send Analysis from Client to Server
Run Code Prover on the file example.c provided with your installation.

Before running these steps, to avoid entering full paths to the Polyspace executables, add the path
polyspaceroot\polyspace\bin to the PATH environment variable on your operating system. Here
polyspaceroot is the Polyspace desktop product installation folder, for instance, C:\Program
Files\Polyspace\R2021a. To check if the path is already added, open a command line terminal
and enter:

polyspace-code-prover -h

If the path to the command is already added, you see the full list of options.

1 Copy the file example.c and all header files from polyspaceroot\polyspace\examples
\cxx\Code_Prover_Example\sources to a folder with write permissions.

2 Open a command terminal. Navigate to the folder where you saved example.c and enter the
following:

polyspace-code-prover -sources example.c -I . -main-generator
 -results-dir . -batch -scheduler hostname

Here, hostname is the host name of your computer. To run a Bug Finder analysis, use
polyspace-bug-finder instead of polyspace-code-prover. Note that you can run the
polyspace-code-prover command with a Polyspace Bug Finder license only, provided you use
the -batch option.

After compilation, the analysis is submitted to a server and returns a job ID.
3 See the status of the current job.

polyspace-jobs-manager listjobs -scheduler hostname

You can locate the current job using the job ID.
4 Once the job is completed, you can explicitly download the results.

4 Run Polyspace Code Prover Server Prior to Code Submission

4-6

polyspace-jobs-manager download -job jobID -results-folder .
 -scheduler hostname

Here, jobID is the job ID from the submission.

The results folder contains the downloaded results file (with extension .pscp). Open the results in
the user interface of the desktop product, Polyspace Bug Finder.

See Also

More About
• “Install Products for Submitting Polyspace Analysis from Desktops to Remote Server” on page 2-

10
• “Send Polyspace Analysis from Desktop to Remote Servers”
• “Send Polyspace Analysis from Desktop to Remote Servers Using Scripts”

 Send Code Prover Analysis from Desktop to Locally Hosted Server

4-7

Deploy Polyspace Code Prover Server

5

Polyspace Products for Code Analysis and Verification

In this section...
“Using Polyspace Products in Software Development” on page 5-2
“Coordinating Pre-Submit and Post-Submit Usage of Polyspace” on page 5-4
“Polyspace Products for Ada Code” on page 5-4

Polyspace products use static analysis to check code for run-time errors, coding standard violations,
security vulnerabilities, and other issues:

• A static analysis tool such as Polyspace Code Prover can cover all possible execution paths
through a program and track data flow along these paths following certain mathematical rules.
The exhaustive control and data flow analysis can complement dynamic testing and expose
potential run-time errors that might not be otherwise found in regular robustness testing.

• A static analysis tool such as Polyspace Bug Finder can scan a program for more obvious run-time
errors, security vulnerabilities, coding standard violations and other issues that potentially lead to
run-time errors or unexpected results.

Using Polyspace Products in Software Development
The Polyspace suite of products supports all phases of a software development process:

• Prior to code submission:

Developers can run the Polyspace desktop or IDE-focused products to check their code during
development or right before submission to meet predefined quality goals.

The products can be integrated into IDEs such as Visual Studio Code, Visual Studio, or Eclipse™,
or run with scripts during compilation. The analysis results can be reviewed in the IDEs or in the
graphical user interface of the desktop products.

Polyspace provides the following products for desktop usage. These products are meant to run on
complete projects or smaller code modules (upto a single source file).

• Polyspace Bug Finder to check code for semantic errors that a compiler cannot detect (such
as use of = instead of ==), concurrency issues, security vulnerabilities and other defects in C
and C++ source code. The analysis can also detect some run-time errors.

• Polyspace Code Prover to perform a much deeper check and prove absence of overflow,
divide-by-zero, out-of-bounds array access and other run-time errors in C and C++ source
code.

• After code submission:

The Polyspace server products can run automatically on newly committed code as a build step in a
continuous integration process (using tools such as Jenkins). The analysis runs on a server and the
results are uploaded to a web interface for collaborative review.

Polyspace provides these products for server usage:

5 Deploy Polyspace Code Prover Server

5-2

• Polyspace Bug Finder Server to run Bug Finder automatically on a server and upload the
results to a web interface for review, and Polyspace Bug Finder Access to review the
uploaded results.

• Polyspace Code Prover Server to run Code Prover automatically on a server and upload the
results to a web interface for review, and Polyspace Code Prover Access to review the
uploaded results.

Typically, Polyspace Bug Finder Server (or Polyspace Code Prover Server) runs on a few build servers
and checks newly committed code as part of software build and testing. Each reviewer (developer,
quality assurance engineer or development manager) has a Polyspace Bug Finder Access (or
Polyspace Code Prover Access) license to review the uploaded analysis results.

In addition, if developers have access to Polyspace Bug Finder Access for web review of post-
submission results, they can also install Polyspace as You Code in their IDEs for pre-submission
analysis. When installed as an IDE extension, Polyspace as You Code performs a file-scope Bug
Finder-like analysis and provides near-instant feedback to developers while coding.

This diagram shows one possible deployment of Polyspace products.

When you use both the desktop and server products, your pre-submission workflow can transition
smoothly to the post-submission workflow.

 Polyspace Products for Code Analysis and Verification

5-3

Coordinating Pre-Submit and Post-Submit Usage of Polyspace
When you run more than one Polyspace products at separate stages in your software development
workflow, the later runs can benefit from the earlier usage, and vice versa. In particular:

• Developers using Polyspace as You Code in their IDEs can easily fix defects and coding standard
violations that can be found and resolved within a single file. A later Polyspace Bug Finder Server
analysis after code submission no longer shows these issues.

• The results of a Polyspace Bug Finder Server analysis can act as a baseline for Polyspace as You
Code runs. Developers using the latest Polyspace Bug Finder Server result as baseline for their
IDE runs can focus only on issues that result from their code changes.

Polyspace Products for Ada Code
Polyspace provides these products for verifying Ada code:

• Polyspace Client™ for Ada to check Ada code for run-time errors on a desktop.
• Polyspace Server for Ada to check Ada code for run-time errors on a server.

You can either use the desktop product to run the analysis on your desktop, or a combination of the
desktop and server products to run the analysis on a server. The analysis results are downloaded to
your desktop for review.

If you have a Polyspace Code Prover Access license and have set up the web interface of Polyspace
Code Prover Access, you can upload each individual Ada result from the Ada desktop products to the
web interface for collaborative review.

See also:

• https://www.mathworks.com/products/polyspace-ada.html
• https://www.mathworks.com/products/polyspaceserverada/

See Also

Related Examples
• “Install Polyspace Desktop Products” (Polyspace Bug Finder)
• “Install and Manage Polyspace as You Code in IDEs” (Polyspace Bug Finder Access)
• “Install Polyspace Server and Access Products”
• “Choose Between Polyspace Bug Finder and Polyspace Code Prover” on page 5-9

5 Deploy Polyspace Code Prover Server

5-4

https://www.mathworks.com/products/polyspace-ada.html
https://www.mathworks.com/products/polyspaceserverada/

Quick Start Guide for Polyspace Server and Access Products
To avoid finding bugs late in the development process, run static analysis by using Polyspace
products.

• Polyspace Bug Finder checks C/C++ code for bugs, coding standard violations, security
vulnerabilities, and other issues.

• Polyspace Code Prover performs exhaustive checks for divide by zero, overflow, array access out
of bounds, and other common types of run-time errors.

See also “Choose Between Polyspace Bug Finder and Polyspace Code Prover” on page 5-9.

If you run Polyspace checkers regularly as part of continuous integration, you can protect against
regressions from new code check-ins. To run Polyspace on a server during continuous integration, use
Polyspace Bug Finder Server and Polyspace Code Prover Server. To host the Polyspace analysis
results, use Polyspace Bug Finder Access and Polyspace Code Prover Access.

A typical workflow looks like this figure.

 Quick Start Guide for Polyspace Server and Access Products

5-5

Installation
Prerequisites

Depending on the needs of your project, team or organization, you have decided to obtain a certain
number of licenses of Polyspace Server and Polyspace Access products. This guide helps you to install
individual instances of these products on a machine.

Install Polyspace Server

To install Polyspace Server products, download and run the MathWorks installer. Enter a license for
the Polyspace Server products (or request a trial license). See also Request a Trial License. The
Polyspace Server products are installed in a separate folder from other MathWorks products. See also
“Install Polyspace Server and Access Products” on page 2-2.

Install Polyspace Access

Before installing Polyspace Access, consider the number of users who will potentially review
Polyspace results simultaneously. The system requirements depend on the number of simultaneous
reviewers. See also “System Requirements for Polyspace Access” (Polyspace Code Prover Access).

Polyspace Access consists of several services: a user manager to authenticate user logins, an issue
tracker to integrate your bug tracking tool with Polyspace, a database to manage results, a web
server to show results, and a gateway to handle communications. The services are deployed in
Docker containers. You can start the services from a common interface called the Cluster Admin.

To install Polyspace Access:

• Download the installer as a zip file.
• Unzip the file and start the Cluster Admin. From the Cluster Admin interface, start the various

services. See “Install Polyspace Access” (Polyspace Code Prover Access).

After installation, to see uploaded results, you and other reviewers can log in to:

https://hostName:portNumber/metrics/index.html

Install Network License Manager

Both Polyspace Server and Polyspace Access use licenses that require communication with a network
license manager for license checkouts.

• To install, configure and start the network license manager for Polyspace Server, see “Administer
Network Licenses”.

• To install, configure and start the network license manager for Polyspace Access, see “Manage
Polyspace Access License” (Polyspace Bug Finder Access).

5 Deploy Polyspace Code Prover Server

5-6

https://www.mathworks.com/downloads/
https://www.mathworks.com/campaigns/products/trials.html

Setting Up Polyspace Analysis
Prerequisites

You or your IT department in your organization must install the required number of Polyspace Server
and Polyspace Access instances. This guide helps you to set up a Polyspace analysis as part of
continuous integration using a single instance of Polyspace Server and Polyspace Access.

To check that your Polyspace Server and Polyspace Access installations can communicate with each
other, see “Check Polyspace Installation” on page 2-5.

Run Polyspace Server and Upload Results to Polyspace Access

You can run the Polyspace Server products at the command line of your operating system:

• To run the analysis, use the polyspace-bug-finder-server and polyspace-code-prover-
server executables.

• To upload analysis results, use the polyspace-access executable. You can also use this
executable to export the results from Polyspace Access as text files for archiving or email
attachments.

You can run all Polyspace executables from the polyspace/bin subfolder of the Polyspace
installation folder (for instance, /usr/local/Polyspace Server/R2021a, see also “Installation
Folder” on page 2-4). To start running Polyspace Server by using sample C source files and sample
scripts, see:

• “Run Polyspace Code Prover on Server and Upload Results to Web Interface” on page 3-2
• “Send Email Notifications with Polyspace Code Prover Server Results” on page 3-8

You can also preconfigure the Polyspace analysis options from your build command (makefile), and
then append a second options file with analysis specifications such as checkers. See “Prepare Scripts
for Polyspace Analysis”.

If you have an installation of the Polyspace desktop products, you can prepare the analysis
configuration in the user interface of the desktop products. You can then generate Polyspace options
files to run during continuous integration. See “Configure Polyspace Analysis Options in User
Interface and Generate Scripts”.

Include Polyspace Runs in Continuous Integration by Using Tools Such as Jenkins

Once you have working scripts to run a Polyspace analysis, you can run those scripts at predefined
intervals using continuous integration tools such as Jenkins and Bamboo. In Jenkins, you can use a
Polyspace plugin to point to your Polyspace installations and send email notifications to developers
after the analysis, based on criteria such as new defects.

From within the Jenkins interface, search for and install the Polyspace plugin. For a quick start on
using the Jenkins plugin and sample scripts, see the Polyspace plugin GitHub repository. For the full
workflow with Jenkins, see “Sample Scripts for Polyspace Analysis with Jenkins”.

 Quick Start Guide for Polyspace Server and Access Products

5-7

https://github.com/mathworks/mathworks-polyspace-plugin

Create a Workflow for Result Reviewers

Depending on tools that you already use, you can set up a convenient workflow for result reviewers.
For example:

Reviewers receive alerts for new results and log into Polyspace Access

• When new results are available, the continuous integration tool alerts a group of users. The email
alert contains the Polyspace Access URL of the project where the results are uploaded.

• In the Polyspace Access interface, a reviewer can open this project URL, filter results based on
files, and fix the issues or set a status for the results. See also:

• “Filter and Sort Results in Polyspace Access Web Interface” (Polyspace Code Prover Access)
• “Address Results in Polyspace Access Through Bug Fixes or Justifications” (Polyspace Code

Prover Access)

Reviewers get customized email alerts with results in attachment

• Before upload to Polyspace Access, using the -set-unassigned-findings option of the
polyspace-access executable, the continuous integration (CI) tool assigns owners to new
analysis results based on file or component ownership or another criteria.

• After upload, using the -export option of the polyspace-access executable, the CI tool
exports analysis results for each owner to a separate text file. The tool then sends the text file in
an email attachment to the owner. The text file contains results with the corresponding URLs in
the Polyspace Access interface.

If you use Jenkins as your CI tool, the Polyspace plugin in Jenkins directly supports this workflow.
See “Sample Scripts for Polyspace Analysis with Jenkins”.

• On receiving the email, the owner opens the attached text file, copies the URL of each result to
their web browser and reviews the result.

Reviewers open tickets from bug tracking tools

• A reviewer, such as a quality engineer, reviews all new results and creates JIRA tickets for
developers. See “Track Issue in Bug Tracking Tool” (Polyspace Code Prover Access).

• Developers open each JIRA ticket and navigate to the corresponding Polyspace result in the
Polyspace Access interface.

5 Deploy Polyspace Code Prover Server

5-8

Choose Between Polyspace Bug Finder and Polyspace Code
Prover

Polyspace Bug Finder and Polyspace Code Prover detect run-time errors through static analysis.
Though the products have a similar user interface and the mathematics underlying the analysis can
sometimes be the same, the goals of the two products are different.

Bug Finder (or Polyspace as You Code, which performs a single-file analysis similar to Bug Finder)
quickly analyzes your code and detects many types of defects. Code Prover checks every operation in
your code for a set of possible run-time errors and tries to prove the absence of the error for all
execution paths1. For instance, for every division in your code, a Code Prover analysis tries to prove
that the denominator cannot be zero. Bug Finder does not perform such exhaustive verification. For
instance, Bug Finder also checks for a division by zero error, but it might not find all operations that
can cause the error.

The two products involve differences in setup, analysis and results review, because of this difference
in objectives. In the following sections, we highlight the primary differences between a Bug Finder
and a Code Prover analysis (also known as verification). Depending on your requirements, you can
incorporate one or both kinds of analyses at appropriate points in your software development life
cycle.

How Bug Finder and Code Prover Complement Each Other
• “Overview” on page 5-9
• “Faster Analysis with Bug Finder” on page 5-10
• “More Exhaustive Verification with Code Prover” on page 5-10
• “More Specific Defect Types with Bug Finder” on page 5-11
• “Easier Setup Process with Bug Finder” on page 5-11
• “Fewer Runs for Clean Code with Bug Finder” on page 5-12
• “Results in Real Time with Bug Finder” on page 5-12
• “More Rigorous Data and Control Flow Analysis with Code Prover” on page 5-12
• “Few False Positives with Bug Finder” on page 5-13
• “Zero False Negatives with Code Prover” on page 5-13

Overview

Use both Bug Finder and Code Prover regularly in your development process. The products provide a
unique set of capabilities and complement each other. For possible ways to use the products together,
see “Workflow Using Both Bug Finder and Code Prover” on page 5-14.

This table provides an overview of how the products complement each other. For details, see the
sections below.

1. For each operation in your code, Code Prover considers all execution paths leading to the operation that do not have a
previous error. If an execution path contains an error prior to the operation, Code Prover does not consider it. See “Code
Prover Analysis Following Red and Orange Checks” (Polyspace Code Prover).

 Choose Between Polyspace Bug Finder and Polyspace Code Prover

5-9

Feature Bug Finder Code Prover
Number of checkers 309 30 checks for critical run-time

errors and 4 checks on global
variable usage

Depth of analysis Fast.

For instance:

• Faster analysis.
• Easier set up and review.
• Fewer runs for clean code.
• Results in real time.

Exhaustive.

For instance:

• All operations of a type
checked for certain critical
errors.

• More rigorous data and
control flow analysis.

Reporting criteria Probable defects Proven findings
Bug finding criteria Few false positives Zero false negatives

Faster Analysis with Bug Finder

How much faster the Bug Finder analysis is depends on the size of the application. The Bug Finder
analysis time increases linearly with the size of the application. The Code Prover verification time
increases at a rate faster than linear.

One possible workflow is to run Code Prover to analyze modules or libraries for robustness against
certain errors and run Bug Finder at integration stage. Bug Finder analysis on large code bases can
be completed in a much shorter time, and also find integration defects such as Declaration
mismatch and Data race.

More Exhaustive Verification with Code Prover

Code Prover tries to prove the absence of:

• Division by Zero error on every division or modulus operation
• Out of Bounds Array Index error on every array access
• Non-initialized Variable error on every variable read
• Overflow error on every operation that can overflow

and so on.

For each operation:

• If Code Prover can prove the absence of the error for all execution paths, it highlights the
operation in green.

• If Code Prover can prove the presence of a definite error for all execution paths, it highlights the
operation in red.

• If Code Prover cannot prove the absence of an error or presence of a definite error, it highlights
the operation in orange. This small percentage of orange checks indicate operations that you must
review carefully, through visual inspection or testing. The orange checks often indicate hidden
vulnerabilities. For instance, the operation might be safe in the current context but fail when
reused in another context.

You can use information provided in the Polyspace user interface to diagnose the checks. See
“More Rigorous Data and Control Flow Analysis with Code Prover” on page 5-12. You can also

5 Deploy Polyspace Code Prover Server

5-10

provide contextual information to reduce unproven code even further, for instance, constrain input
ranges externally.

Bug Finder does not aim for exhaustive analysis. It tries to detect as many bugs as possible and
reduce false positives. For critical software components, running a bug finding tool is not sufficient
because despite fixing all defects found in the analysis, you can still have errors during code
execution (false negatives). After running Code Prover on your code and addressing the issues found,
you can expect the quality of your code to be much higher. See “Zero False Negatives with Code
Prover” on page 5-13.

More Specific Defect Types with Bug Finder

Code Prover checks for types of run-time errors where it is possible to mathematically prove the
absence of the error. In addition to detecting errors whose absence can be mathematically proven,
Bug Finder also detects other defects.

For instance, the statement if(a=b) is semantically correct according to the C language standard,
but often indicates an unintended assignment. Bug Finder detects such unintended operations.
Although Code Prover does not detect such unintended operations, it can detect if an unintended
operation causes other run-time errors.

Examples of defects detected by Bug Finder but not by Code Prover include good practice defects
(Polyspace Bug Finder), resource management defects (Polyspace Bug Finder), some programming
defects (Polyspace Bug Finder), security defects (Polyspace Bug Finder), and defects in C++ object
oriented design (Polyspace Bug Finder).

For more information, see:

• “Defects” (Polyspace Bug Finder): List of defects that Bug Finder can detect.
• “Run-Time Checks” (Polyspace Code Prover): List of run-time errors that Code Prover can detect.

Easier Setup Process with Bug Finder

Even if your code builds successfully in your compilation toolchain, it can fail in the compilation
phase of a Code Prover verification. The strict compilation in Code Prover is related to its ability to
prove the absence of certain run-time errors.

• Code Prover strictly follows the ANSI® C99 Standard, unless you explicitly use analysis options
that emulate your compiler.

To allow deviations from the ANSI C99 Standard, you must use the options. If you create a
Polyspace project from your build system, the options are automatically set.

• Code Prover does not allow linking errors that common compilers can permit.

Though your compiler permits linking errors such as mismatch in function signature between
compilation units, to avoid unexpected behavior at run time, you must fix the errors.

For more information, see “Troubleshoot Compilation and Linking Errors” (Polyspace Code Prover).

Bug Finder is less strict about certain compilation errors. Linking errors, such as mismatch in
function signature between different compilation units, can stop a Code Prover verification but not a
Bug Finder analysis. Therefore, you can run a Bug Finder analysis with less setup effort. In Bug
Finder, linking errors are often reported as a defect after the analysis is complete.

 Choose Between Polyspace Bug Finder and Polyspace Code Prover

5-11

Fewer Runs for Clean Code with Bug Finder

To guarantee absence of certain run-time errors, Code Prover follows strict rules once it detects a
run-time error in an operation. Once a run-time error occurs, the state of your program is ill-defined
and Code Prover cannot prove the absence of errors in subsequent code. Therefore:

• If Code Prover proves a definite error and displays a red check, it does not verify the remaining
code in the same block.

Exceptions include checks such as Overflow, where the analysis continues with the result of
overflow either truncated or wrapped around.

• If Code Prover suspects the presence of an error and displays an orange check, it eliminates the
path containing the error from consideration. For instance, if Code Prover detects a Division by
Zero error in the operation 1/x, in the subsequent operation on x in that block, x cannot be zero.

• If Code Prover detects that a code block is unreachable and displays a gray check, it does not
detect errors in that block.

For more information, see “Code Prover Analysis Following Red and Orange Checks” (Polyspace Code
Prover).

Therefore, once you fix red and gray checks and rerun verification, you can find more issues. You
need to run verification several times and fix issues each time for completely clean code. The
situation is similar to dynamic testing. In dynamic testing, once you fix a failure at a certain point in
the code, you can uncover a new failure in subsequent code.

Bug Finder does not stop the entire analysis in a block after it finds a defect in that block. Even with
Bug Finder, you might have to run analysis several times to obtain completely clean code. However,
the number of runs required is fewer than Code Prover.

Results in Real Time with Bug Finder

Bug Finder shows some analysis results while the analysis is still running. You do not have to wait
until the end of the analysis to review the results.

Code Prover shows results only after the end of the verification. Once Bug Finder finds a defect, it
can display the defect. Code Prover has to prove the absence of errors on all execution paths.
Therefore, it cannot display results during analysis.

More Rigorous Data and Control Flow Analysis with Code Prover

For each operation in your code, Code Prover provides:

• Tooltips showing the range of values of each variable in the operation.

For a pointer, the tooltips show the variable that the pointer points to, along with the variable
values.

• Graphical representation of the function call sequence that leads to the operation.

By using this range information and call graph, you can easily navigate the function call hierarchy
and understand how a variable acquires values that lead to an error. For instance, for an Out of
Bounds Array Index error, you can find where the index variable is first assigned values that lead to
the error.

When reviewing a result in Bug Finder, you also have supporting information to understand the root
cause of a defect. For instance, you have a traceback from where Bug Finder found a defect to its

5 Deploy Polyspace Code Prover Server

5-12

root cause. However, in Code Prover, you have more complete information, because the information
helps you understand all execution paths in your code.

Data Flow Analysis in Code Prover

Control Flow Analysis in Code Prover

Few False Positives with Bug Finder

Bug Finder aims for few false positives, that is, results that you are not likely to fix. By default, you
are shown only the defects that are likely to be most meaningful for you.

Bug Finder also assigns an attribute called impact to the defect types based on the criticality of the
defect and the rate of false positives. You can choose to analyze your code only for high-impact
defects. You can also enable or disable a defect that you do not want to review2.

Zero False Negatives with Code Prover

Code Prover aims for an exhaustive analysis. The software checks every operation that can trigger
specific types of error. If a code operation is green, it means that the operation cannot cause those
run-time errors that the software checked for3. In this way, the software aims for zero false negatives.

2. You can also disable certain Code Prover defects related to non-initialization.

 Choose Between Polyspace Bug Finder and Polyspace Code Prover

5-13

If the software cannot prove the absence of an error, it highlights the suspect operation in red or
orange and requires you to review the operation.

Workflow Using Both Bug Finder and Code Prover
If you have both Bug Finder and Code Prover, based on the above differences, you can deploy the two
products appropriately in your software development workflow. For instance:

• All developers in your organization can run Bug Finder on newly developed code. For maintaining
standards across your organization, you can deploy a common configuration that looks only for
specific defect types.

Code Prover can be deployed as part of your unit testing suite.
• You can run Code Prover only on critical components of your project, while running Bug Finder on

the entire project.
• You can run Code Prover on modules of code at the unit testing level, and run Bug Finder when

integrating the modules.

You can run Code Prover before unit testing. Code Prover exhaustively checks your code and tries
to prove the presence or absence of errors. Instead of writing unit tests for your entire code, you
can then write tests only for unproven code. Using Code Prover before unit testing reduces your
testing efforts drastically.

Depending on the nature of your software development workflow and available resources, there are
many other ways you can incorporate the two kinds of analysis. You can run both products on your
desktop during development or as part of automated testing on a remote server. Note that it is easier
to interpret and fix bugs closer to development. You will benefit from using both products if you
deploy them early and often in your development process.

There are two important considerations if you are running both Bug Finder and Code Prover on the
same code.

• Both products can detect violations of coding rules such as MISRA C® rules and JSF® C++ rules.

However, if you want to detect MISRA C:2012 coding rule violations alone, use Bug Finder. Bug
Finder supports all the MISRA C:2012 coding rules. Code Prover does not support a few rules.

• If a result is found in both a Bug Finder and Code Prover analysis, you can comment on the Bug
Finder result and import the comment to Code Prover.

For instance, most coding rule checkers are common to Bug Finder and Code Prover. You can add
comments to coding rule violations in Bug Finder and import the comments to the same violations
in Code Prover. To import comments, open your result set and select Tools > Import Comments.

• You can use the same project for both Bug Finder and Code Prover analysis. The following set of
options are common between Bug Finder and Code Prover:

• “Target and Compiler”
• “Macros”
• “Environment Settings”

3. The Code Prover result holds only if you execute your code under the same conditions that you supplied to Code Prover
through the analysis options.

5 Deploy Polyspace Code Prover Server

5-14

• “Inputs and Stubbing”
• “Multitasking”
• “Coding Standards & Code Metrics”
• “Reporting”, except Bug Finder and Code Prover report (-report-template)

You might have to change more of the default options when you run the Code Prover verification
because Code Prover is stricter about compilation and linking errors.

 Choose Between Polyspace Bug Finder and Polyspace Code Prover

5-15

	Install Polyspace Code Prover Server
	Polyspace Code Prover Server Product Description

	Install and Configure Polyspace Code Prover Server
	Install Polyspace Server and Access Products
	Workflow
	Product Installation
	Check Polyspace Installation
	Install Polyspace with Other MathWorks Products
	Configure License Borrowing
	Update Polyspace Products

	Install Products for Submitting Polyspace Analysis from Desktops to Remote Server
	Choose Between Local and Remote Analysis
	Requirements for Remote Analysis
	Configure and Start Server
	Configure Client
	Offload Polyspace Analysis from Desktop to Server
	Submit Analysis Jobs from Multiple Releases of Polyspace

	Run Polyspace Code Prover Server After Code Submission
	Run Polyspace Code Prover on Server and Upload Results to Web Interface
	Prerequisites
	Check Polyspace Installation
	Run Code Prover on Sample Files
	Sample Scripts for Code Prover Analysis on Servers
	Specify Sources and Options in Separate Files from Launching Scripts
	Complete Workflow

	Send Email Notifications with Polyspace Code Prover Server Results
	Creating E-mail Notifications
	Prerequisites
	Export Results for E-mail Attachments
	Assign Owners and Export Assigned Results

	Run Polyspace Code Prover Server Prior to Code Submission
	Send Code Prover Analysis from Desktop to Locally Hosted Server
	Client-Server Workflow for Running Bug Finder Analysis
	Prerequisites
	Configure and Start Server
	Configure Client
	Send Analysis from Client to Server

	Deploy Polyspace Code Prover Server
	Polyspace Products for Code Analysis and Verification
	Using Polyspace Products in Software Development
	Coordinating Pre-Submit and Post-Submit Usage of Polyspace
	Polyspace Products for Ada Code

	Quick Start Guide for Polyspace Server and Access Products
	Installation
	Setting Up Polyspace Analysis

	Choose Between Polyspace Bug Finder and Polyspace Code Prover
	How Bug Finder and Code Prover Complement Each Other
	Workflow Using Both Bug Finder and Code Prover

